Ученые обнаружили летающие скирмионы

Топологическая оптика и топологическая фотоника стали «горячими» областями науки с 1980-х годов после того, как были открыты сингулярности в магнитных полях. А относительно недавняя Нобелевская премия, выданная за открытие и изучение топологических особенностей в физике конденсированного вещества, еще больше подстегнула интерес научного сообщества, ведь все это открывает перспективы для реализации нетривиальных видов взаимодействий электромагнитных волн с материей. Это же, в свою очередь, можно будет использовать в ряде новых технологий передачи информации и энергии на большие расстояния.

© Yijie Shen Схемы пространственных топологических структур магнитных вихревых колец и скирмионов в сверхтороидальном световом импульсе. Серые точки и кольца отмечают распределение сингулярностей (седловые точки и вихревые кольца) в магнитном поле, большие розовые стрелки отмечают селективные направления магнитных векторов, а меньшие цветные стрелки показывают скирмионные структуры в магнитном поле © Yijie Shen 

Не так давно группа ученых-физиков из Великобритании и Сингапура сообщила об открытии новой «семьи» электромагнитных импульсов с тороидальной топологией. Эти импульсы являются идеальными физическими воплощениями решений уравнений Максвелла, что позволяет реализовать управление их топологической сложностью и получить так называемую супертороидальную топологию. Электромагнитные поля таких супертороидальных импульсов формируют структуры, практически полностью совпадающие со структурой скирмионов, являющихся в обычных условиях «завихрениями» магнитных полей в среде некоторых магнитных материалов. Только вот скирмионы супертороидальных импульсов летают в пространстве практически со скоростью света.

Скирмионы, сложные топологические квазичастицы, были открыты Тони Скирмом (Tony Skyrme) в 1962 году в попытках создать объединенную модель нуклона. Как уже упоминалось выше, скирмионы представляют собой наноразмерные магнитные вихри с упорядоченными структурами. Эти квазичастицы уже достаточно хорошо изучены во многих системах конденсированного вещества, включая и экзотику, наподобие конденсата Бозе-Эйнштейна, хиральных магнитов, сверхпроводников и жидких кристаллов. Но если скирмионы смогут летать, это откроет бесконечный ряд новых возможностей для информационных устройств следующих поколений.

Супертороидальный импульс, названный учеными «летающим пончиком», включает в себя рекурсивные тороидальные топологические структуры, благодаря чему конфигурация его электромагнитного поля напоминает матрешку. И топологической сложностью такого импульса можно достаточно просто управлять, увеличивать или уменьшать количество вложенных в него тороидальных импульсов, регулировать направление закручивания магнитного вихря и т.п.

Топологические особенности супертороидальных импульсов обеспечивают дополнительные «степени свободы», которые можно использовать в качестве носителей информации для систем оптического кодирования-декодирования, измерительных систем различного рода, систем отображения информации с сверхвысокой разрешающей способностью и, конечно, систем беспроводной передачи информации и энергии на большие расстояния.

Статья опубликована в журнале Nature Communications   
Источник: dailytechinfo.org

Метки , . Закладка постоянная ссылка.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *