Ученые обеспокоились развитием устойчивости к ГМ-технологии CRISPR

Эксперименты на дрозофилах показали, что в популяции может легко возникнуть и распространиться «резистентность» к модификации генов с помощью CRISPR/Cas9.

Система CRISPR/Cas9Система CRISPR/Cas9
© artofthecell.com

Техника генной модификации CRISPR/Cas9 заимствована у иммунной системы бактерий, которые используют эти молекулы для борьбы с вирусами. Она демонстрирует такую точность и эффективность работы, что в последние годы ученые всерьез поговаривают об использовании ГМ для борьбы с природными вредителями и разносчиками болезней. Для этого разрабатываются методы «генного драйва», способствующие распространению в популяции нужного гена – например, делающего потомство частично стерильным или неподходящим для переноса инфекции.

Помимо такого гена система генетического драйва должна содержать ген, кодирующий белок Cas9, который разрезает ДНК, а также фрагменты направляющей РНК, которые указывают белку-нуклеазе точное место действия. Филипп Мессер (Philipp Messer) и его коллеги из Корнеллского университета дополнили этот набор геном флуоресцентного белка, который позволил им легко отслеживать распространение CRISPR-комплексов в популяции лабораторных мушек-дрозофил. Результаты ученые приводят в статье, опубликованной журналом PLOS Genetics.

Такая система генетического драйва быстро распространяет ген в популяции. Если скрещивание произошло между родителями, из которых только один несет CRISPR-«комплект», то он начнет работу в оплодотворенной яйцеклетке. В теории, Cas9 внесет разрыв точно в нужной части ДНК, после чего системы репарации клетки заполнят образовавшееся пространство, скопировав недостающие звенья с CRISPR-«комплекта» на гомологичной (парной) хромосоме. Однако в реальных экспериментах все происходит не всегда идеально, и система может работать с ошибками.

Если только одна копия ДНК несет комплект «генетического драйва» (1),
то Cas9 вносит в другую разрыв (2), после чего он заполняется копиями нужных генов (3).
Иногда этот процесс происходит с ошибками, приводя к развитию устойчивости (4).
©PLOS Genetics

Мессер и его коллеги показали, что в некоторых случаях нуклеаза Cas9 производится в избыточном количестве, снова и снова разрезая целевую хромосому. В других вариантах ошибки происходили еще в процессе или до оплодотворения – так или иначе, но распространение «комплекта» в популяции замедлялось, а то и вовсе останавливалось. Скорость развития устойчивости у разных штаммов сильно варьировалась, составляя от пяти до 56 процентов, которые делают применение технологии уже почти бессмысленным.

«Эта “резистентность” легко разрушит практически любые намеренные попытки применения генного драйва, – резюмируют исследователи, – и представляет собой большую проблему для множества ее многообещающих применений». О ее существовании было известно и раньше, однако теперь, впервые рассмотрев распространение устойчивости в эксперименте, ученые относятся к ней куда более серьезно.

Стоит добавить, что уже предложены и даже экспериментально опробованы несколько методов противодействия развитию такой устойчивости. Этому посвящена отдельная статья, которую Мессер с соавторами представили на сервисе препринтов BioRxiv.org – в ней, в частности, демонстрируется потенциал параллельного использования нескольких направляющих РНК.

Источник: naked-science.ru

Метки , , , . Закладка постоянная ссылка.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *