Коллективу материаловедов из НИТУ «МИСиС» и химиков РТУ «МИРЭА» удалось соединить молекулу-фотосенсибилизатор (преобразователь, способный передавать энергию квантов света имеющемуся в живых тканях кислороду, превращая его в активную форму и высокоактивные радикалы, которые и оказывают цитотоксическое действие) с магнитной наночастицей, получив инновационную терапевтическую систему для борьбы с онкологическими заболеваниями. Наночастица является управляемым «локомотивом», который исследователи научились локально доставлять в опухоль и отслеживать по МРТ, а фоточувствительная молекула, выполняет функцию эффективного ликвидатора патологии, являясь терапевтической компонентой. Результаты исследования уже протестированы in vivo и и будут опубликованы в международном мартовском номере научного журнала Journal of Colloid and Interface Science.
© Journal of Colloid and Interface Science
«Фотодинамическая терапия — это метод лечения рака, который использует сочетание специальных препаратов — фотосенсибилизаторов и света с волнами определенной длины. Фотосенсибилизаторы имеют свойство накапливаться в опухоли и при воздействии света с волнами определенной длины фотосенсибилизаторы вырабатывают особую форму кислорода, которая разрушает раковые клетки. Кроме уничтожения раковых клеток, фотодинамическая терапия разрушает раковую опухоль двумя другими способами. Во-первых, фотосенсибилизаторы могут повредить кровеносные сосуды в опухоли, таким образом, нарушая приток питательных веществ к ней, во-вторых, может активировать иммунную систему, заставляя ее атаковать раковые клетки», — рассказал один из авторов исследования профессор, д.х.н., заведующий кафедрой ХТБАС РТУ МИРЭА Михаил Грин.
Однако этот перспективный метод имеет естественное ограничение – доступ источника света непосредственно к пораженному внутреннему органу и неконтролируемое накопление фотосенсибилизаторов в тканях. В первую очередь в организм пациента (внутривенно или в полости) вводят фотосенсибилизатор. Препарат абсорбируется клетками по всему телу, при этом в раковых клетках фотосенсибилизатор накапливается в несколько раз больше по сравнению со здоровыми клетками и остается в них дольше.
Затем с помощью оптического световода врачи облучают опухоль, «пропитанную» «световыми киллерами» — фотосенсибилизаторами. Источниками света для фотодинамической терапии, как правило, являются лазерные установки. Лазерный свет при помощи оптоволоконного кабеля нужно направить непосредственно на опухоль внутри тела. Оптический кабель можно ввести через эндоскоп в желудок или другие естественные отверстия.
При введении препарат с фотосенсибилизатором распространяется по всему телу, и врачи не могут знать, когда его концентрация достигнет нужного максимума в конкретном органе, чтобы начать непосредственную операцию. Больного нельзя держать под лампами и скальпелем хирурга много часов кряду в ожидании оптимального момента для облучения светом, либо с введенными внутрь световодами. Именно поэтому фотодинамическую терапию применяют в основном только для лечения рака кожи. Научный коллектив НИТУ «МИСиС» решил эту проблему инновационным препаратом, включающим молекулы бактериохлорина и магнитные наночастицы.
«Нам удалось успешно соединить фотосензибилизатор- бактериохлорин и наночастицы магнетита, являющиеся одновременно доставщиком лекарства и контрастным агентом. Так мы получили новый инструмент, позволяющий с помощью МРТ эффективно отслеживать степень накопления молекул в пораженном органе, что обеспечивает нужную концентрацию и максимально сжатые сроки хирургического вмешательства. В целом этот подход представляется перспективным для тонкой настройки терапевтических комплексов и ощутимо масштабирует метод фотодинамической терапии», — рассказал один из авторов исследования заведующий лабораторией «Биомедицинские наноматериалы» НИТУ «МИСиС» к.х.н Максим Абакумов.
Исследовательский коллектив уже провел испытания нового метода in vivo, получив хорошие промежуточные результаты — иммобилизованные на магнитных наночастицах «световые киллеры», были успешно доставлены в раковые клетки и вызвали фотоиндуцированную гибель раковых клеток у лабораторных мышей.
Источник: scientificrussia.ru