Климат Земли не расстилал красный коврик первой многоклеточной жизни. Кембрийскому взрыву предшествовал криогений, во время которого лёд, возможно, дважды сковывал всю планету целиком. Кембрий, напротив, превратил Землю в теплицу: атмосферная концентрация углекислого газа с тех пор никогда не была настолько высокой. Затем вновь похолодало, хотя до уровня морозильника температура больше не опускалась.
Гора Шаста в Калифорнии, входящая в систему Каскадных гор — континентальной дуги (фото NASA Earth Observatory).
Кое-какие данные о тогдашней температуре и атмосферном уровне углекислого газа сохранились, но трудно сказать, по каким причинам в то время происходили изменения. Геолог Райан Маккензи из Техасского университета в Остине (США) и его коллеги попытались разобраться в свидетельствах вулканической активности того периода, ибо это основной источник CO2 в геологической летописи. Чтобы это сделать, пришлось поискать множество иголок в самых разных стогах сена.
В магматических породах, таких как гранит и его вулканический двойник риолит, можно найти крошечные кристаллы минерала под названием циркон. Циркон — лучший друг геолога во многих отношениях. В его ловушку попадают радиоактивный уран и свинец, и по их распаду можно в точности определить возраст кристалла. К тому же это удивительно прочный минерал, способный пережить эрозию, которая разрушает многие другие кристаллы. Самая старая часть Земли из когда-либо датированных — миниатюрная крупинка циркона возрастом 4,4 млрд лет, найденная в осадочной породе, которая сформировалась «всего лишь» около 3 млрд лет назад.
Цирконы — это летопись характеристик магматических пород, в которых они сформировались. Иными словами, они могут рассказать исследователям о вулканах, которые произвели их на свет. Поскольку вулканы вдоль зон субдукции — наиболее распространённый источник тех видов магматических пород, которые включают в себя цирконы, последние способны указать на местоположение этих вулканов, даже если с тех пор попали в осадочные породы.
Исследователи свели результаты анализа цирконов в осадочных породах всего мира в один набор данных. Возраст цирконов говорит о том, когда континентальные дуги вулканов были активны вдоль зон субдукции. А когда вулканы работают, они не только формируют новые вулканические породы, но и извергают CO2 и, следовательно, влияют на климат.
Таким образом удалось обнаружить низкую активность континентальных дуг во время ледниковых периодов криогения, пик активности в кембрийском периоде и последующее снижение. Иными словами, вулканическая активность повышалась во время тёплых периодов, когда рос уровень CO2 в атмосфере, и снижалась в холодные периоды.
В прошлом году аналогичная корреляция была описана для мелового периода. Утверждалось, что, поскольку тектоника плит привела к более активному формированию континентальных дуг, вулканическая деятельность могла освободить CO2 из карбонатных пород вдоль границ континентов. Вопреки предыдущим гипотезам, новая идея гласит, что континентальные дуги — более важный источник атмосферного CO2, чем подводный вулканизм срединно-океанических хребтов.
Когда кембрийский период подошёл к концу, сложился суперконтинент Гондвана (позднее ставший южной половиной Пангеи). Поскольку моря, разделявшие части будущей Гондваны, оказались закрыты, субдукция остановилась, и континентальные дуги утихли.
Исследователи указывают на Гималаи как пример такого явления, но в меньшем масштабе. Индийский субконтинент был соседом Австралии, когда образовалась Пангея. Когда же она распалась, Индия пошла на север, толкая перед собой океанскую кору и создавая тем самым вулканическую дугу на переднем крае своего движения. Однако к тому времени, когда Индия столкнулась с Евразией, уже не было никакой океанской коры, поэтому субдукция не состоялась — и вулканы, некогда возвышавшиеся по обе стороны исчезнувшего моря, остались без топлива.
Одного этого было достаточно, чтобы снизить выделение углекислого газа в атмосферу. Кроме того, сжатие континентальных плит привело к образованию горной цепи внушительных размеров, которая быстро разрушалась, и силикатные породы, распадаясь, впитывали CO2. Результатом стало значительное уменьшение CO2 в атмосфере.
Собирание Гондваны было лишь одним из многих столкновений, происходивших в то время. Континентальные арки, спавшие в криогении, воспламенились, когда континенты начали двигаться друг к другу, выбрасывая в воздух CO2 и нагревая планету. Когда континенты столкнулись, вулканическая активность прекратилась, и эрозия, возможно, помогла охладить Землю.
Таким образом, вполне вероятно, что континентальные дуги сыграли важную роль в изменении климата в течение этого времени, то есть климатические экстремумы были неизбежным следствием тектоники плит. И, соответственно, тектоника плит определила состояние биосферы. Многоклеточные организмы впервые появляются в палеонтологической летописи в период криогения и начинают бурно развиваться с потеплением. В кембрии, однако, на пике жары происходит несколько массовых вымираний. Когда мир немного остыл, жизнь снова начала процветать и разносторонне развиваться.
Возможно, тектоника плит и изменения климата были не только злодеями. Некоторые исследователи полагают, что эти факторы ответственны также за появление скелетов из карбоната кальция — событие, сыгравшее ключевую роль в кембрийском взрыве.
Результаты исследования опубликованы в журнале Geology.
По материалам Ars Technica.
Источник: compulenta.computerra.ru